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Abstract 
The analysis of a celestial icosahedron geometry is considered as a potential 

design for a Vacuum Lighter than Air Vehicle (VLTAV). The goal of the analysis is 

ultimately to understand the initial fluid-structure interaction of the VLTAV and the 

surrounding airflow. Up to this point, previous research analyzed the celestial 

icosahedron VLTAV in relation to withstanding a symmetric sea-level pressure applied 

to the membrane of the structure. This scenario simulates an internal vacuum being 

applied in the worst-case atmospheric environmental condition. The next step in analysis 

is to determine the aerodynamic effects of the geometry. The experimental setup for 

obtaining aerodynamic effects is validated prior to analyzing the deformed celestial 

icosahedron geometry by analyzing a perfect sphere utilizing the same manufacturing 

process and setup expected to be adopted for the celestial icosahedron experiments. The 

data received from Computational Fluid Dynamics (CFD) analysis of the deformed 

structure in collaboration with Wright State University is used to determine the 

significance of aerodynamic effects on the structure. The pressure profiles experienced in 

the wind tunnel experiments and CFD analysis are comparatively similar. Therefore, the 

CFD data is used to conduct a structural analysis in which aerodynamic effects are 

incorporated. The research concluded that the aerodynamic pressures do not significantly 

affect the stress on the structure. As a result, it recommended that a full nonlinear fluid-

structure interaction analysis is not necessary for this structure. 
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I. Introduction 

1.1 Chapter Overview 
Throughout history, humans have utilized lighter than air vehicles (LTAV) as a 

form of air travel. Mankind produced many iterations of the LTAV as well, utilizing 

different forms of obtaining a lighter than air gas within the membrane of a structure. 

Methods used include heating the internal air of the LTAV as well as using lighter 

than air gases to include hydrogen and helium. However, the prospect of utilizing 

sufficiently strong and light materials with the air inside the body being excavated to 

create a vacuum has yet to be manufactured and tested as a lighter than air vehicle. A 

vacuum lighter than air vehicle (VLTAV), which is used in this research, presents 

pros and cons to a traditional LTAV.  

The introductory chapter lays the framework for the objective of the research, the 

motivation for the research, a background on the research, history of lighter than air 

vehicles, previous research, and an overview of the thesis.   

1.2 Objective 
The objective of this thesis is to determine whether the aerodynamic effects of a 

celestial icosahedron VLTAV, from Kyle Moore’s work, significantly affect the 

structural integrity of the VLTAV model [1],[2],[3]. Comparing the structural 

response to aerodynamic effects with the structural response of an internal vacuum at 

sea-level pressure provides insight into whether or not it is important to consider 

aerodynamic effects in future research for this vehicle. The pressures experienced by 

the structures as they resist freestream airflow can be utilized to update the structural 
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analysis models. The models incorporated in the research so far have assumed 

symmetric sea-level pressure acting on the surface of the membrane for the different 

structures considered here at the Air Force Institute of Technology (AFIT). However, 

since this is a dynamic problem, the effects of airflow around the structure must be 

taken into consideration when structurally analyzing the VLTAVs.  

1.3 Motivation 
The motivation behind studying the feasibility of a VLTAV is simple; the 

advantages of a VLTAV over a traditional LTAV increase the utility of the air 

vehicle. One of the main issues of the historical LTAVs, which utilize lighter than air 

gases, is the simple fact that they leak. The permeability of the balloon structures in a 

traditional LTAV is not low enough to prevent the lighter than air gases from leaking 

out. Therefore, in order to maintain a consistent altitude over a period of time, 

traditional LTAVs must carry reserve stores of their lighter than air gas. This, in turn, 

reduces the overall payload that the LTAV withstands to make room for the reserves. 

Along with reducing payload, at some point the craft must return to the surface to 

reestablish its gas reserves. Although a VLTAV is not impermeable theoretically, the 

advantages of a vacuum over lighter than air gas with respect to reserves is readily 

apparent. First, the VLTAV does not require the storage of on-board reserves of 

lighter-than-air gas which increases the effective payload of the overall craft. 

Admittedly, the VLTAV does require an on-board pump to extract any atmospheric 

air that permeates the membrane of the vehicle. Secondly, because the vehicle does 

not rely on a reserve supply of gas, the VLTAV does not require returning to the 
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surface for resupply. The VLTAV, therefore, indefinitely loiters with the constraint 

resting on the operational capability of the on-board pump. [4] 

Along with the loiter advantages, a VLTAV could change altitude more readily 

than a traditional LTAV. Traditional vehicles require the usage of ballast (by either 

taking on to descend or removing to ascend) to adjust their altitude. A VLTAV, 

however, allows atmospheric air in to descend or extracts atmospheric air to ascend 

via an on-board pump system likely with an electronic controller. [4] 

The uses of a VLTAV are vast. A network of the balloons equipped with solar 

arrays could be utilized above the cloud layer to collect solar energy or a network of 

the balloons could be used to collect water within the atmosphere. [4] 

Although there are many civilian applications for a VLTAV, this thesis is 

concerned with the applications within the military environment. Utilizing the 

extended loiter time of a VLTAV, the military could enhance the capabilities of 

intelligence, surveillance, and reconnaissance (ISR). A VLTAV could transport the 

payload necessary to conduct ISR missions while loitering indefinitely in a pre-

defined position. Apart from ISR, loiter time of the VLTAV could be utilized by the 

military to enhance or to increase the redundancy of Nuclear Command, Control, and 

Communications (NC3) networks.  

1.4 Background 
Francesco Lana de Terzi first introduced the concept of a VLTAV in 1663. De 

Terzi’s concept, as shown in Figure I-1, utilized copper spheres connected to a ship 

design which would be evacuated of air in order to provide buoyancy. Although the 

volume of air displaced by the internal vacuums of the copper spheres would 
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theoretically weigh more than the materials of the ship itself, de Terzi had not 

accounted for the buckling effect of the external atmosphere collapsing the copper 

balloons. [5] 

 

Figure I-1. Francesco Lana de Terzi's VLTAV concept [5] 

To maintain the feasibility of a VLTAV, an internal structure must be introduced 

that withstands the external pressure of the surrounding atmosphere. Throughout the 

theses and dissertation research conducted at the Air Force Institute of Technology 

(AFIT), there have been many geometric structures designed and analyzed to 

determine the feasibility of a VLTAV. Of the structures analyzed so far, three designs 

maintained the greatest feasibility to include the icosahedron frame, the hexakis 

frame, and the celestial icosahedron frame. The icosahedron consists of 20 equilateral 

triangles and 12 vertices, the hexakis consists of 120 identical triangles and 62 

vertices, and the celestial icosahedron consists of 9 intersecting rings spaced out and 
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at 45 degree increments. Each of the designs includes a thin, membrane-like skin that 

is draped over the frame to provide means of creating a vacuum. [1] 

To date, the analysis and research of the Masters and PhD students at AFIT has 

not addressed the asymmetric effects caused by airflow around the VLTAV. The size 

constraint of the VLTAV is motivated by operationally being able to fit through a 

door frame in an urban environment, and the analysis of the structure has been 

conducted at the brink of buckling. The varying pressure observed due to airflow 

around the VLTAV could have resounding effects on the structural integrity of the 

VLTAV.  

1.5 Lighter Than Air Vehicles 
The first of the lighter than air vehicles took flight in 1783 produced by the 

Montgolfiere brothers in France. The balloon built by the Montgolfiere brothers 

produced lift by heating the interior air of the balloon to make the air inside the 

balloon less dense than the outside atmosphere [6]. Later in 1785, the first balloon 

filled with hydrogen flew from Dover to Calais. [7] 

Many of the early lighter than air vehicles produced in the world resembled a 

nominally spherical shape as seen in Figure I-2. The reason for this spherical shape is 

evident in calculating the weight-to-buoyancy ratio of a body which is discussed in 

greater detail in section 6 of this chapter. With any air vehicle which used lighter than 

air gas to produce lift, this spherical shape took form by either heating the internal air 

in a hot air balloon or filling the balloon with a lighter than air gas such as helium or 

hydrogen. The internal lighter than air gas produces an internal pressure on the 
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structure of the balloon allowing for the structure to be constructed out of light-

weight envelope material. [7] 

 

Figure I-2. Early “spherical” pressure balloon [7] 

As shown in Table I-1, the lifting gases used for original lighter than air vehicle 

design are at best 9% as dense as the air surrounding the vehicle. Hydrogen maintains 

the superior density of the lifting gases at 9% the density of sea level air, but 

hydrogen also introduces the most safety concerns of the gases.  
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Table I-1. Lifting gas properties (sea level) [7] 

 

Hydrogen was often chosen to provide vehicles lift because of the low density as 

well as the cost and abundance of the gas as compared to helium. Throughout World 

War I cities in the United Kingdom suffered bombardment from German hydrogen 

airships. The German hydrogen airships avoided many of the ground anti-aircraft 

defenses because of the heights they could reach; if the airships were hit by any anti-

aircraft fire, several did not burn or explode due to the hydrogen cells on board. 

However, as the allies began to use incendiary ammunition, more of the hydrogen 

airships suffered more casualties due to hydrogen fires and explosions. The reason for 

these fires and explosions is credited to the low ignition energy of hydrogen as well 

as the high flammability of a mixture of hydrogen and oxygen which would be 

expected from a jet of hydrogen from a leak mixing with the external atmosphere 

outside of an airship. [8]  

Due to the safety concerns associated with hydrogen as a lifting gas along with 

the relatively high density of other lifting gases, a solution for a vacuum lighter than 

air vehicle becomes very valuable. A vacuum or near vacuum has significantly lower 
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densities than any other lifting gas, and theoretically a vacuum lighter than air vehicle 

produces a weight-to-buoyancy ratio less than 1, providing lift in a cheaper and safer 

manner than other lifting gases. This is predicated on the assumption that materials 

are available to keep the structure of the vehicle intact. The next section will discuss 

the theory behind the weight-to-buoyancy ratio which allows LTAVs to float.  

1.6 Weight-to-Buoyancy Ratio 
According to Archimedes’ Principle, “A body partly or completely immersed in a 

fluid is buoyed up by a force equal to the weight of the displaced fluid”[9]. This 

principle is the crux behind how LTAVs and, theoretically, VLTAVs operate. As 

shown in Figure I-3, Archimedes’ Principle can be applied to a weight in water. 

Although, the weight sinks, a buoyant force is created equal to the weight of the 

displaced water. This force reduces the value on the scale due to the effective 3 lbs of 

force acting upward on the weight when submerged [10]. If the weight of the 

displaced water is greater than that of the weight of the object being submerged, then 

the object will float. This concept is known as a weight-to-buoyancy (W/B) ratio. If 

the weight-to-buoyancy ratio is less than 1, that is if the weight of the object is lighter 

than the weight of the displaced fluid, then an object will float [1]. 
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Figure I-3. Archimedes’ Principle illustrated with a 7 lb weight [1] 

The same concept is true in air as it is in water. A lighter-than-air vehicle 

produces lift by displacing the atmosphere around it with a less dense form of fluid. 

Historically, as discussed previously, LTAVs achieve a weight-to-buoyancy ratio of 

less than 1 with lighter than air gases. Because these gases are less dense than air, the 

weight of the air the vehicle displaces weighs more than the combination of the lifting 

gas inside the vehicle plus the weight of the vehicle itself. Again, this concept is why 

the production of a vacuum lighter than air vehicle could be so lucrative. If a structure 

has an internal vacuum, there is no weight associated with an internal gas to add to 

the vehicle’s overall weight.  

Although the W/B ratio of a vacuum lighter than air vehicle is ideal on the 

surface, there are issues associated with creating an internal vacuum as opposed to 
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filling a structure with a lighter than air gas. Issues associated with an internal 

vacuum as a means of reducing the W/B ratio include structural instability and 

integrity. The pressure differential between the internal vacuum and the atmospheric 

pressure outside of the structure cause an external load on the vehicle in the form of a 

uniform pressure equal to that of the atmospheric pressure. In contrast, typical lighter 

than air vehicles which use a lighter than air gas have internal pressure greater than 

that of the atmospheric pressure allowing a simple membrane to restrain the air. The 

external pressure associated with a VLTAV leads to the potential collapse or buckling 

of the vehicle’s structure. Structural integrity requirements call for an internal 

structure in the vehicle that can withstand these loads without buckling or collapsing. 

Therefore, the material used for constructing a VLTAV will be denser than the 

material used for a traditional lighter than air vehicle because the internal structure 

must withstand the external pressure loads. The next section describes three of the 

structural geometries designed in past research. [2] 

1.7 Previous Research and Structural Geometries 
Through previous research at AFIT, three structural designs emerged to solve the 

problem of structural integrity in a vacuum lighter than air vehicle. The ideal shape to 

consider when minimizing a weight-to-buoyancy ratio is a sphere because a sphere 

produces the most internal volume (vacuum) for the smallest surface area (structure, 

i.e. weight) and consequently the most lift [1]. However, a perfect sphere shell would 

not be able to withstand the external atmospheric pressure if its thickness is reduced 

to a point where a weight-to-buoyancy ratio of less than 1 is achieved. Therefore, in 

his thesis, Trent Metlen first introduced the idea of an icosahedron which is a 
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geodesic sphere that approximates a sphere using straight lines [11]. Next, Brian 

Cranston proposed, in his dissertation, the design of a hexakis icosahedron which 

would provide a closer approximation to a sphere compared to Melen’s icosahedron. 

Along with the hexakis, Cranston also analyzed a celestial icosahedron structure 

which provided the closest approximation to a sphere to date.  

The icosahedron that Metlen proposed was derived from a patent from 

Buckminster Fuller in 1951 in which Fuller designed a geodesic dome [12]. The 

icosahedron is a polyhedron with 20 equilateral triangles in which the vertices lie on 

the surface of an imaginary sphere. To create an internal vacuum, a membrane must 

be draped over the icosahedron frame in which the frame provides structural integrity 

for the lighter than air vehicle and the membrane provides a means to create the 

vacuum. Metlen’s icosahedron, shown in Figure I-4, utilized an Ultra High Modulus 

(UHM) carbon fiber tube frame and a reinforced Mylar membrane draped over the 

frame for conducting his analyses. [11] 
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Figure I-4. Metlen’s icosahedron (geodesic sphere) representation [11] 

Brian Cranston later proposed the hexakis icosahedron because Metlen’s 

icosahedron holds a significantly less internal volume compared to a perfect sphere, 

especially with large diameters. By increasing the diameter of the structure, the W/B 

ratio is reduced further compared to smaller diameters, therefore, this volumetric void 

is problematic. As a result, Cranston proposed a structure even closer in shape and 

volume to a sphere called the hexakis icosahedron. The hexakis icosahedron, shown 

in Figure I-5, has 120 faces and 62 vertices. [1] 
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Figure I-5. Cranston’s Hexakis Icosahedron [3] 

Lastly, Cranston then proposed the most spherical design in the AFIT research so 

far, the celestial icosahedron. The celestial icosahedron design, shown in Figure I-6, 

consists of intersecting circular rings as opposed to the combination of straight rods in 

the previously mentioned icosahedron and hexakis icosahedron. Instead of flat, 

connected triangular faces, the celestial icosahedron had 9 intersecting rings revolved 

around each axis offset by 45 degrees. Cranston did not analyze the celestial 

icosahedron structure thoroughly, so Kyle Moore later optimized the structure for a 

minimum diameter which could still float given the materials used. [1] 
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Figure I-6. Celestial icosahedron frame in SolidWorks 

The icosahedron, hexakis icosahedron, and the celestial icosahedron designed by 

previous researchers to date have their own merit when it comes to the design of a 

vacuum lighter than air vehicle. While the celestial icosahedron provides the closest 

geometry to a sphere and therefore the most internal volume to be evacuated, the 

icosahedron and hexakis icosahedron provide more structural integrity because their 

members are straight and not curved. An aspect of design analysis which has not been 

taken into account yet in past VLTAV research is the aerodynamic effects of the 

geometric shapes when deformed under internal vacuum. Airflow around these 
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shapes will cause pressures and other aerodynamic phenomenon which have not 

previously been considered in the structural analyses of the VLTAV. Consequently, 

the purpose of this thesis is to provide the initial aerodynamic analysis which can be 

utilized to determine if the fluid-structure interaction of a VLTAV is a problem worth 

considering in design.  

1.8 Overview 

• Chapter I: Thesis objective, motivation, background, lighter than air vehicles, and 

previous research 

• Chapter II: Assumptions, methodology, and theory associated with research 

• Chapter III: Detailed methodology to include the finite element model, validation 

of test setup, stagnation pressure comparison, conversion of models, additive 

manufacturing, incorporating aerodynamic effects to structural analysis 

• Chapter IV: Results and discussion to include validation of setup, stagnation 

pressure results, CFD comparison to wind tunnel data, structural analysis with 

aerodynamic effects 

• Chapter V: Conclusions and recommendations 
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II. Theory 

2.1 Chapter Overview 
Although the idea of lighter than air travel was first introduced by de Terzi in 

1670, with the idea of creating an internal vacuum in copper spheres, the first flights 

utilized the concept of a lighter than air vehicle (LTAV). Francesco Lana de Terzi 

had formulated the idea for a vacuum lighter than air vehicle (VLTAV), but due to 

the compressive stress of the outer atmosphere, the spheres collapsed.  

Since de Terzi, the research of VLTAVs has not produced a physical prototype 

that floats with an internal vacuum. Although the research from past students at the 

Air Force Institute of Technology (AFIT) has not produced a working prototype, the 

analyses produced studying VLTAVs provides data to suggest that floating is 

possible with materials that may be available in the near future. The previous research 

from AFIT students analyzes three feasible design geometries that include an 

icosahedron, a hexakis icosahedron, and, most recently, a celestial icosahedron.  

The analyses conducted on the different geometric structures of the VLTAV 

involved nonlinear-solution methods to characterize the displacements of the skin and 

the frame of a VLTAV when a ramped pressure is applied to the outer surface. The 

analyses used a pressure equivalent to that of sea-level pressure as a worst-case 

scenario. The analyses show that the VLTAV deforms when reacting to sea-level 

pressure as the internal air is vacuumed out. The deformations in the skin and frame 

have effects on the aerodynamics of the entire structure. The goal of this thesis is to 

determine the aerodynamic effects and discuss how the aerodynamic effects affect the 

already completed structural analyses. 
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This chapter addresses the assumptions, brief methodology, and theory behind the 

research conducted in this thesis. The theory behind the structural analysis tools as 

well as the aerodynamic experiments addressed in this chapter show the approach 

taken and give an understanding of the principles utilized in this work. The theory 

shall address finite element analysis (FEA), nonlinear structural analysis, 

aerodynamics of a sphere, pressure measurement technique, drag measurement 

technique, and Reynolds number scaling. 

2.2 Assumptions 
In order to conduct the research associated with this thesis, there are several 

assumptions that were made that must be taken into consideration. The first 

assumption is that the deformation of the VLTAV due to the aerodynamic effects of 

the airflow around the body are not large enough to change the aerodynamics 

significantly. Next, this thesis assumes, as has been assumed in other theses, that the 

materials utilized are able to be manufactured into the geometries analyzed within the 

thesis.  

The first assumption addresses the problem of conducting wind tunnel and CFD 

analysis with multiple deformed models. With the assumption that deformations due 

to aerodynamics are small compared to the deformation brought about by applying 

sea-level pressure to the outer surface of the membrane on the structure, the research 

conducted utilizes a single deformed model for all velocities analyzed. This 

assumption is tested and addressed in later sections with the stagnation pressure 

comparisons.  
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The second assumption assumes the materials used in structural analyses can be 

readily manufactured in the geometries consistent with the analysis. This assumption 

is more reality everyday as manufacturing techniques improve. The capabilities of 

major graphene manufacturers include producing graphene sheets in thickness on the 

order of micrometers to hundreds of nanometers which is on the same order as the 

analysis conducted for this thesis. Also, according to Ren and Cheng, “Bluestone 

Global Tech is a USA-based CVD graphene manufacturer established in 2011 that 

produces graphene films on copper, SiO2/Si wafers and flexible polyethylene 

terephthalate (PET), and its largest film produced on copper that is available is 24 x 

300 inch2. [13] 

Similarly, the manufacturing technology of carbon nanotube composites can be 

manufactured with the same thickness as the thin walled tubes used in the structural 

analysis for this thesis. As an example, Cheng et al. utilized tensile test samples cut 

from carbon nanotube composite panels with a thickness of 0.3mm [14]. Also, it has 

been shown that Multi-walled carbon nanotube-sheet-reinforced bismaleimide resin 

nanocomposites are produced at a thickness of 60µm for dog-bone shaped specimens 

which retain the same material properties as used in this analysis [15]. Moore, for his 

analysis, utilized a carbon nanotube composite thickness of 0.2 mm for his beam 

thickness.  

Therefore, the technology exists to manufacture the materials on the scale needed 

to represent the analyses. However, it is still assumed that the graphene and carbon 

nanotube composite materials are able to be shaped into the geometry of the celestial 
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icosahedron. This may or may not be possible with the small scale thicknesses 

necessary to physically build the structural model. 

2.3 Methodology 
The research conducted for this thesis seeks to gain an understanding of the 

relationship between aerodynamic and structural analyses for the celestial 

icosahedron VLTAV. By understanding this relationship, the determination can be 

made on whether aerodynamic effects must be considered for future analyses and 

designs. The research includes conducting structural analysis utilizing finite element 

methods, conducting CFD analysis of the celestial icosahedron in collaboration with 

Wright State University, and conducting wind tunnel experiments to determine the 

aerodynamic effects of a deformed VLTAV and to validate CFD results.  

A structural analysis of Moore’s minimum diameter model is conducted to 

produce a deformed VLTAV which can be employed to understand the aerodynamic 

effects of the deformed shape. In order to gain confidence in the wind tunnel data 

acquired, before conducting experiments with the deformed shape, wind tunnel 

experiments were conducted with a perfect sphere to compare to analytical data 

available for this sphere. If the data from the wind tunnel experiments on a perfect 

sphere correlate well with the analytical data, then the experimental set up is 

validated. Also, to assure the quality of the first assumption in the previous section, a 

structural analysis was conducted based on a scenario of applying a stagnation 

pressure to one hemisphere of the celestial icosahedron to determine the difference in 

displacements between a stagnation pressure hemisphere and a sea-level pressure 

only hemisphere. 
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Once confidence is built in the methods of analysis and testing via the activities 

described in the previous chapter, the deformed celestial icosahedron shall be 

analyzed to determine if the aerodynamics significantly affect the stresses which the 

VLTAV experiences. Figure II-1 illustrates the process used to make the 

determination of the interaction between the aerodynamic and structural analyses. 

 

Figure II-1. Interaction between aerodynamic and structural effects 

2.4 Structural Analysis 
The structural analysis conducted for this thesis is consistent with the structural 

analysis conducted previously by Kyle Moore. Moore utilized the celestial 
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icosahedron frame which consists of the nine intersecting tubular rings rotated at 45 

degrees about each access with a membrane surrounding the internal frame [1]. The 

Abaqus Quasi-Static Nonlinear analysis is used due to large deformations in the 

structure which come about from utilizing a thin membrane of graphene and thin 

walled tubes of carbon nanotube material properties. The large deformations expected 

in the analysis lead to the possibility of nonlinear geometry while the possibility of 

entering the plastic regime of the material allows for the possibility of nonlinear 

material behavior [16]. 

2.4.1 Finite Element Analysis 
FEA is a numerical method for solving field problems to include heat transfer, 

stress analysis, and magnetism among others [17]. As stated previously, the finite 

element model for this thesis employs Abaqus as the tool for running the finite 

element analysis of the celestial icosahedron design. For a finite element simulation, 

the first thing that must be done is to discretize the structure to be analyzed. The 

matrices which make up the fundamental equation for finite element analysis are 

indexed based on the nodes within a structural analysis. [18] 

Each element within a finite element model has 5 different characteristics to 

include family, degrees of freedom, number of nodes, formulation, and integration 

[18]. It is up to the modeler to determine the correct selection in each of these 

categories. A major distinction for the family is the geometry of the element. As an 

example, for the celestial icosahedron analysis, the frame should be made of beam 

elements because the geometry of a beam or truss are ideal for a rib, but trusses 

cannot handle bending so beams are the most suitable candidate. A membrane 
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element is the logical choice for the graphene membrane since the thickness is 

relatively small and the geometry is most closely related to the membrane element. 

Figure II-2 and Figure II-3 show the elements used in the analysis of the celestial 

icosahedron VLTAV. 

 

Figure II-2. Generic beam element which are used for frame [18] 

Figure II-3. Generic membrane element which is used for skin [18] 

The degrees of freedom associated with an element include translation 

(displacement) and rotation for each node in each direction for the majority of 

stress/displacement simulations. The number of nodes on an element determines the 

interpolation function used for the element. For example, an element with two nodes 

on one edge would use a linear interpolation function for that edge while an element 
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with three nodes would use a quadratic interpolation function for that edge. The 

formulation of an element relates to the mathematical theory which will be used to 

solve the simulation whether that be Eulerian or Lagrangian among others. 

Integration is used to integrate material response over the volume of each element 

using numerical techniques. [18] 

For the purposes of the structural analysis in this thesis, the frame of the celestial 

icosahedron is constructed of B31 beam elements and the skin is modeled using 

M3D4R membrane elements. B31 is a Timoshenko beam in three dimensional space 

with a linear interpolation function (i.e. 2 nodes). The M3D4R membrane element is a 

three-dimensional 4-node membrane element with reduced integration. Figure II-4 

and Figure II-5 show an illustration of the B31 element and the M3D4R element 

respectively [1]. 

 

Figure II-4. B31 beam element [1] 



24 

 

Figure II-5 . M3D4R membrane element [1] 

2.4.2 Nonlinear Analysis 
A nonlinear analysis is used for the structural analysis of the celestial icosahedron 

VLTAV design since the expectation is to have large displacements and/or rotations 

as the structure withstands atmospheric pressure. Nonlinear analysis uses numerical 

methods in order to iteratively calculate the displacement of element nodes to find the 

correct value [19]. The equations are solved iteratively for the correct displacement 

value and is dependent upon the type of nonlinear method being used. The iterations 

are terminated once a tolerance is met, which could be on a value for strain 𝜀𝜀, for a 

convergence criterion. The convergence criterion is very small for terminating the 

iterative calculations [19]. 

Abaqus utilizes the Newton-Raphson method for calculating nonlinear structural 

analysis problems. In order to find a solution to a nonlinear problem, Abaqus 

incrementally increases the load over delta a time step and solves for an equilibrium 
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configuration after each of the steps. For each increment, the solver iterates through 

the calculation to attempt to find the equilibrium configuration. [18] 

The Newton-Raphson method in general is described by the iterative algorithm 

found in Equation (1). This method is used to solve a nonlinear equation through 

iterations. This method can be expanded into the solution of a nonlinear system of 

equations which is useful for FEA. The method provides a means of solving nonlinear 

equations through linear means at very small increments. [20] 

 𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 − 𝑓𝑓(𝑥𝑥𝑖𝑖)/𝑓𝑓′(𝑥𝑥𝑖𝑖) ( 1 ) 

The first iteration in a load increment is shown in Figure II-6. The solver uses the 

structures original stiffness ,𝐾𝐾0, based off of the configuration at 𝑢𝑢0to find a 

correction value 𝑐𝑐𝑎𝑎 to update the new configuration of the structure 𝑢𝑢𝑎𝑎 [18]. Abaqus 

then forms a new stiffness for the new configuration, 𝐾𝐾𝑎𝑎. Based off of this new 

configuration, Abaqus updates the internal load, 𝐼𝐼𝑎𝑎, and the difference between the 

applied load, 𝑃𝑃, and the internal load is found as the residual force, 𝑅𝑅𝑎𝑎 [18]. If the 

residual force was 0, then the point 𝑎𝑎 on the figure would be on the nonlinear curve. 

Therefore, Abaqus utilizes this residual force as a convergence criteria for the 

equilibrium solution for this increment. If the residual force does not meet a tolerance 

value (default to 0.5% of force in the structure), the solver will continue to iterate 

until an equilibrium solution is found. The equilibrium configuration, once 

converged, is 𝑢𝑢𝑎𝑎 [18]. 
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Figure II-6. First Iteration in an Increment [18] 

In order to combat any issues of convergence due to instability within the 

analysis, the Abaqus solver allows for the use of a feature called automatic adaptive 

stabilization. Basically this feature within the nonlinear solver uses the aid of artificial 

damping. If the stabilization method is adaptive, the damping value can vary spatially 

or temporally as an analysis is run. For the case of this research the damping value is 

varied temporally. The variance of the artificial damping within the model is 

dependent on the convergence history of the solution. If convergence is an issue due 

to instabilities within the structure or rigid body modes, the analysis tool will increase 

the damping factor in order to try and combat these instabilities. [21] 

2.5 Aerodynamic Analysis 
The purpose of this thesis is to understand the relationship between the 

aerodynamic and structural analyses to determine whether aerodynamic effects must 

be taken into consideration in future structural analyses and designs for the VLTAV. 
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In order to understand the aerodynamic data obtained from experiments and 

computational analyses for better application in structural analysis, the theory behind 

the experiments and analyses must be understood. This section addresses the 

aerodynamics of a sphere for assistance in validating the aerodynamic test setup. This 

section also addresses the pressure and drag measurement techniques used in 

collection of data, and this section addresses scaling the flow inside the wind tunnel 

using Reynolds number.  

2.5.1 Aerodynamics of a Sphere 
Before conducting aerodynamic analysis of the deformed celestial icosahedron 

model, the test setup planned for the analysis must be validated against a known 

experimental scenario. Due to the close geometric shape of the deformed celestial 

icosahedron VLTAV to a perfect sphere, the determination was made to validate the 

test setup for wind tunnel analysis with aerodynamic data associated with a perfect 

sphere. The theory and analytical data available for flow around a sphere, therefore, 

must be understood.  

Due time constraints, the test setup is validated against data available for the drag 

coefficient of a sphere in uniform flow. When an object is placed in a moving fluid, 

or moves through a stationary fluid, a force is exerted on that object. The force 

exerted is in the direction of relative motion of the object to the fluid producing a 

force referred to as drag. This drag force is dependent upon the size of the body, the 

fluid velocity, the fluid density, and the fluid viscosity [22]. The correlation for drag, 

or the dimensionless drag coefficient, in flow for a sphere is a fundamental problem 

in fluid flow calculations [23]. Morrison provides a data correlation between the drag 
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coefficient of a sphere and the Reynolds number up to turbulent flow. The Reynolds 

number is a ratio between the inertial forces and viscous forces of a fluid. The 

Reynolds number was first introduced in 1883 and is discussed further in the section 

on Reynolds number scaling. The equation below shows the data correlation for drag 

coefficient of a sphere as a function of Reynolds number.  

 

𝐶𝐶𝐷𝐷 =
24
𝑅𝑅𝑅𝑅

+
2.6 �𝑅𝑅𝑅𝑅5.0�

1 + �𝑅𝑅𝑅𝑅5.0�
1.52 +

0.411 � 𝑅𝑅𝑅𝑅
2.63𝑥𝑥105�

−7.94

1 + � 𝑅𝑅𝑅𝑅
2.63𝑥𝑥105�

−8.00 +
0.25 � 𝑅𝑅𝑅𝑅106�

1 + � 𝑅𝑅𝑅𝑅106�
 

 ( 2 ) 

The use of this equation is not recommended above a Reynolds number of 106 

according to Morrison, but is an excellent means to predict the drag crisis range of 

Reynolds number depicted in Figure II-7. 
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Figure II-7. Drag Coefficient versus Reynolds number for Schlichting experimental 
data and the Morrison fit to correlation data [23] 

This data is utilized in later sections to compare experimental data for the drag on 

a sphere with analytical data. 

2.5.2 Data Acquisition Techniques  

The two data sets acquired for this thesis within the wind tunnel are the drag data 

and the pressure data associated with pressure at the surface of the model. The drag 

data is not only utilized to validate the test set up with the perfect sphere scenario, but 

it is also compared to the CFD results for the deformed VLTAV for comparison of 

experimental and analytical results. The pressure data acquired from the deformed 

VLTAV model is employed to compare to the pressure data acquired from CFD 

analysis.  
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The drag data for the perfect sphere as well as the deformed VLTAV is captured 

via an internally mounted force balance which is inserted into the model for mounting 

within the wind tunnel. Here, the purpose of the force balance is to collect the drag 

data through the axial force component. It also supports the weight of the model, with 

weight registered via the normal force component. Figure II-8 shows the perfect 

sphere model mounted in the wind tunnel using the force balance. 

The drag data produced from the wind tunnel experiments must be corrected 

based on solid body blockage in the wind tunnel. Due to the fact that the cross 

sectional area of the sphere is 0.0729 𝑚𝑚2 and the cross sectional area of the test 

section in the wind tunnel is 0.880𝑚𝑚2, the percent blockage is approximately 8%. 

According to West and Apelt, “For blockage ratios less than 6%, it is shown that the 

effects of blockage on pressure distribution and the drag coefficient are small and that 

the Strouhal number is unaffected by blockage” [24]. The Strouhal number (St) is a 

dimensionless number describing the oscillating flow mechanisms around an object. 

For this thesis, the research does not look at dynamic oscillations and therefore the 

Strouhal number is not as great of a concern. 
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Figure II-8. Wind tunnel setup for perfect sphere model 

 The force balance is rated at 22.67 kg and 11.34 kg for the normal and axial 

forces about the moment center respectively. Through using the data correlation 

equation, the maximum drag force expected for a perfect sphere with the same 

diameter as the experimental model is approximately 0.9 kg which is below the rating 

of the force balance. The weight of the model, once support material was removed, 

was approximately 6.8 kg which also fell within the rating of the force balance. 

Therefore, the force balance used was able to accommodate both force components. 

The normal and axial force directions for the force balance are indicated in Figure 

II-9. 
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Figure II-9. Axial and normal directions for force balance 

The pressure acquisition system for the deformed VLTAV model utilizes a 

miniature electronic pressure scanner. The unit is a miniature electronic differential 

pressure measurement system. The pressures reported from the CFD analysis 

conducted by Wright State University were compared to the specifications of the 

pressure scanner to ensure that the pressures expected were in the range of the 

scanner. The maximum pressure reported from the CFD report was approximately 3 

KPa at a velocity of 58.1152 𝑚𝑚
𝑠𝑠

 [25]. According to the data sheet for the pressure 



33 

scanner, the range is ±15 psid (or 103 KPa). Psid is the differential pressure 

referenced to a pressure that than ambient atmospheric pressure. In the case of these 

wind tunnel tests, the reference pressure was measured just upstream of the test 

section. Therefore, the maximum differential pressure expected is within the 

specifications of the pressure scanner. Also, the static accuracy of the pressure 

scanner is accurate down to ±0.03 % of the full scale pressure range or 

approximately ±30.9 Pa [26]. Figure II-10 displays the interfaces and layout of the 

pressure scanner used for pressure data acquisition within the wind tunnel 

experiments. The “Measurement Sources” are the tubulation to which the tubes from 

the model’s pressure ports are connected. The “Run Reference Source” is the 

tubulation to which the reference pressure at the tunnel throat is connected to the 

scanner. The scanner utilizes silicon piezoresistive pressure sensors for each port. 

There is a separate sensor for each of the measurement sources. [26] 
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Figure II-10. Pressure scanner depiction and interfaces 

2.5.3 Computational Fluid Dynamics (CFD) 

The experimental data acquired from the wind tunnel analyses, to include the drag 

and pressure data, is compared with the same data from CFD analyses for both the 

perfect sphere scenario and the deformed VLTAV structure. Wright State University, 

in collaboration with this research, provided the CFD analysis and results via 
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consulting reports. Ultimately, the data received from the CFD analysis produces a 

pressure field file which can be imported into the structural analysis software to gain 

an understanding of the fluid-structure interaction.  

The CFD analysis is conducted with the ANSYS fluent software. The students at 

Wright State, in the first report, demonstrated their CFD capabilities with simple test 

cases of airfoils and spheres [25]. The analysis utilized far field boundaries at least 15 

chord lengths from the structure in order to reduce boundary affects. Also, the mesh 

was refined near the structure surface and downstream of the surface becoming 

coarser in the free stream regions where flow gradients are small. The NACA 0012 

airfoil was used by Wright State University to show the students capabilities first in 

the 2-dimensional regime before extending their analysis into the 3-dimensional 

regime. Figure II-11 shows the results of the 2-dimensional NACA airfoil which 

validates aspects of the students’ capabilities. [25] 

Figure II-11. NASA experimental results (left), ANSYS fluent generated results 
(right) 
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The analysis utilizes the transition based 𝑘𝑘-𝑘𝑘𝑙𝑙-𝜔𝜔 turbulence model. The model 

consists of three equations and is an eddy-viscosity type and includes transport 

equations for turbulent kinetic energy (𝑘𝑘𝑇𝑇), laminar kinetic energy (𝑘𝑘𝐿𝐿), and inverse 

turbulent time scale (𝜔𝜔). These three variables represent the 𝑘𝑘-𝑘𝑘𝑙𝑙-𝜔𝜔 within the 

model’s name. According to the ANSYS Theory Guide, the 𝑘𝑘-𝑘𝑘𝑙𝑙-𝜔𝜔 turbulence model 

“is used to predict boundary layer development and calculate transition onset. This 

model can be used to effectively address the transition of the boundary layer from a 

laminar to a turbulent regime” [27]. For the case of the perfect sphere, the CFD 

analysis was conducted with the inlet, side, bottom, and top boundaries 2.5 diameters 

away from the sphere and the trailing boundary 7.5 diameters downstream, with a 

diameter of 0.3048 m for this case. The grid consisted of 503,740 elements which 

followed the same convention of the airfoil with coarser far field elements up to 0.762 

m and finer elements closer to the surface of the sphere at approximately 0.4572 mm. 

The educational version of Fluent would not allow for more than 512,000 elements. 

Figure II-12 illustrates the sphere’s position in reference to the boundaries within the 

computational domain. 
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Figure II-12. Sphere computation domain 

A similar approach was taken in the case of the deformed VLTAV as the perfect 

sphere scenario. The structure used within the CFD analysis was provided to Wright 

State based off of the same model that was additively manufactured at the Air Force 

Institute of Technology for wind tunnel analysis to ensure the data from the CFD 

analysis should be comparable to wind tunnel results. Within Chapter III on research 

methodology, the process for converting the structural analysis mesh into a solid body 

model is explained in greater detail. Both the CFD analysis and the wind tunnel tests 

were conducted using the geometry exported from the structural analysis mesh. In 

contrast to the CFD analysis for the perfect sphere, however, the analysis conducted 
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for the deformed VLTAV consisted of not only a fine mesh surrounding the surface 

of the model, but a fine mesh on the surface as well. The purpose of this approach is 

to attain pressure data at points on the surface. The point cloud of pressure data can 

be compared to wind tunnel data and utilized for the load in the structural analysis. 

 

Figure II-13. Near field mesh around/on the surface of the evacuated sphere 

2.5.4 Reynolds Number Scaling 

Since the diameter of the model for aerodynamic analysis must be smaller than 

what is a feasible diameter to maintain a weight-to-buoyancy ratio of less than 1, a 

scaling factor for the wind speed in the tunnel must be incorporated to maintain 
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consistent aerodynamic effects. If the small scale model is kept at the same Reynolds 

Number as the larger diameter model, then the aerodynamic effects can be related. 

Reynolds Number is calculated via Equation (3) where 𝜌𝜌 is the mass density of the 

airflow, 𝑢𝑢 is the velocity of the airflow, 𝐿𝐿 is the characteristic length of the object 

being tested, and 𝜇𝜇 is the viscosity of the airflow. [28] 

 𝑅𝑅𝑅𝑅 =
𝜌𝜌𝑢𝑢𝐿𝐿
𝜇𝜇

  ( 3 ) 

As is evident from Equation (3), if the characteristic length is reduced, one of the 

other parameters must be changed in order to maintain the same Reynolds Number 

for both the larger and smaller diameter celestial icosahedrons. The method for 

maintaining consistent Reynolds Numbers in this thesis involves increasing the 

velocity of the airflow in the wind tunnel. The increase in airspeed for the smaller 

model as compared to the larger model will counteract the decrease in diameter 

within Equation (3). 

If the Reynolds number is held constant between the larger diameter structural 

analysis model and the smaller diameter wind tunnel model, then the pressure 

coefficients and the drag coefficients from the wind tunnel model can be related to the 

larger diameter structural analysis model. In order to apply this relationship, the 

deformed structural model must be uniformly proportionally scaled to the wind tunnel 

diameter. For example, if the maximum displacement of the 0.7576 m diameter 

structural analysis model is 0.038 m, then the maximum displacement of the 0.2032 

m wind tunnel model shall be 0.010 m. This relationship is shown in the equation 

below. 
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 𝐷𝐷𝑠𝑠
𝑈𝑈𝑠𝑠

=
𝐷𝐷𝑤𝑤
𝑈𝑈𝑤𝑤

→
0.7576𝑚𝑚
0.038𝑚𝑚

=
0.2032𝑚𝑚
0.010𝑚𝑚

  ( 4 ) 

Where 𝐷𝐷𝑠𝑠 and 𝐷𝐷𝑤𝑤 are the diameters of the structural and wind tunnel model 

respectively, and 𝑈𝑈𝑠𝑠 and 𝑈𝑈𝑤𝑤 are the maximum displacements of the structural and 

wind tunnel models respectively. The linear transformation of the structural model 

shrinks to the size of the wind tunnel model by a scale factor that is the same in all 

directions. Figure II-14 provides a depiction of the linear scaling taking place. 

 

Figure II-14. Depiction of scaling between structural analysis model and wind 
tunnel model 
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2.6 Summary 
In this chapter, the assumptions and methodology are addressed for the research 

associated with this thesis. The assumptions include negligible deformations to the 

model due to aerodynamic effects as compared to load due to the vacuum and this 

thesis assumes the availability and manufacturability of the materials used in analysis. 

The methodology section provides an introduction to the succeeding chapter in which 

the methodology is discussed more in depth.  

This chapter also presents the basic theory behind the methods used for this 

research. The structural analysis theory included high level theory associated with 

finite element analysis as well as an introduction into nonlinear analysis techniques. 

The theory sections also included aerodynamic analysis. The aerodynamic analysis 

section discusses the concept of the aerodynamics of a sphere, the data acquisition 

techniques used in the research, the CFD methods conducted by Wright State in 

collaboration with this thesis, and finally the concept behind Reynolds number 

scaling for wind tunnel analysis. 
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III. Research Methodology 

3.1 Chapter Overview 
The previous Air Force Institute of Technology (AFIT) research conducted for the 

celestial icosahedron design, as well as other geometric shapes, assumes there is a 

symmetric sea-level pressure evenly distributed over the vacuum lighter than air 

vehicle’s (VLTAV) membrane. The research conducted to date has not evaluated the 

interaction between the aerodynamic pressures and forces acting on the vehicle with 

the structural dynamics that have been thoroughly analyzed. In order to accurately 

characterize the aerodynamics of the celestial icosahedron VLTAV, a structural 

analysis must be run first in order to determine deformations expected due to 

atmospheric pressure.  

The model analyzed is a variation of the model that Moore analyzed in the 

Complete Abaqus Environment (CAE) for his thesis. While Moore’s model (Figure 

III-1) had a diameter of 0.7576 meters as the minimum diameter, the model for the 

wind tunnel tests will need to be smaller in diameter in order to fit in the test section 

[1].  

This chapter addresses the methodology behind the research conducted for this 

thesis. The aspects addressed include the finite element model, validation of wind 

tunnel test setup, stagnation pressure scenario, conversion of structural analysis mesh 

to solid body, additive manufacturing practices, and incorporation of aerodynamic 

effect to the structural analysis. 
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Figure III-1. Deformation contour plot for the feasible minimum diameter model 
(0.7576 meters) [1] 

3.2 Finite Element Model 
In order to produce the deformed geometry, which eventually is tested in the wind 

tunnel for aerodynamic effects, a structural analysis similar to that of past AFIT 

students’ research must be conducted. The Finite Element Analysis software Abaqus 

is used to conduct the structural analysis, just as past students have conducted their 

analysis. The analysis run was consistent with Kyle Moore’s analysis of his minimum 

diameter model. The geometry of the wire frame is 0.3788 m in radius for each of the 

9 circular frame elements with a membrane draped over. This model was considered 

because it is the worst case scenario model for existing factor-of-safety when 

analyzed with symmetric sea-level pressure acting on the surface. The elements of the 

frame and the membrane are constrained together using a tie constraint with a surface 

to surface discretization method. The frame structure was meshed with 552 B31 beam 
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elements and the skin was meshed with 1827 M3D4R membrane elements as shown 

in Figure III-2 and Figure III-3 respectively. [1] 

 

Figure III-2. B31 element mesh of the frame part  
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Figure III-3. M3D4R element mesh of the skin part  

The frame is modeled using thin walled pipes with a radius of 8𝑥𝑥10−3meters and 

a thickness of 2.00𝑥𝑥10−4 meters, and the skin is modeled by giving the membrane 

elements a thickness of 7.75𝑥𝑥10−7 meters [1]. The model also utilizes the same 

boundary conditions as Moore’s model which consisted of constraining both the top 

and bottom vertices laterally (U1=U3=0). The boundary conditions used can be seen 

in Figure III-4. 
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Figure III-4. Boundary conditions for structural analysis [1] 

The analysis for the finite element model employed the use of a quasi-static, 

nonlinear loading condition consistent with a pressure equal to sea-level (101,325 Pa) 

acting uniformly on the outer surface of the celestial icosahedron. The nonlinear step 

in the analysis utilized the Newton-Raphson technique for addressing nonlinear 

characteristics. The Newton-Raphson technique is discussed in greater detail in the 

structural analysis section of the theory chapter.  
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Also, the quasi-static, nonlinear step utilized the adaptive stabilization feature in 

the nonlinear analysis. The adaptive stabilization reduces the instabilities and 

eliminates rigid body modes in an analysis which employs membrane elements. The 

adaptive stabilization method used in the structural analysis is discussed in greater 

detail in the theory chapter as is the Newton-Raphson technique. The values used for 

automatic stabilization and incrementation in the nonlinear analysis step are provided 

in Table III-1. Also, a study was conducted varying the two parameters of the 

automatic stabilization tool (dissipated energy fraction and maximum ratio of 

stabilization to strain energy) to determine if the parameters effect the drastic change 

in displacement Moore was observing at approximately 10% of the load applied. This 

study along with the results are discussed in greater detail within the results chapter. 

Table III-1. Nonlinear analysis parameters 

Dissipated Energy Fraction 2𝑥𝑥10−4 

Maximum Ratio of Stabilization to Strain Energy 5𝑥𝑥10−2 

Maximum Number of Increments 1𝑥𝑥108 

Initial Increment Size 1𝑥𝑥10−6 𝑝𝑝𝑅𝑅𝑐𝑐 

Minimum Increment Size 1𝑥𝑥10−36 𝑝𝑝𝑅𝑅𝑐𝑐 

Maximum Increment Size 1 𝑝𝑝𝑅𝑅𝑐𝑐 

 

3.3 Stagnation Pressure Comparison 
The celestial icosahedron with a diameter of 0.7576m was used to run an analysis 

within Abaqus to determine the difference in the maximum displacement of a 
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hemisphere with a sea-level atmospheric pressure applied (101,325 Pa) and a 

hemisphere with a stagnation pressure uniformly applied consistent with the 

stagnation pressure at 17.8816 𝑚𝑚
𝑠𝑠

 (101,509 Pa). The purpose of this analysis is to 

determine the soundness of the underlying assumption made that the aerodynamics do 

not significantly affect the deformation of the structure. The analysis conducted used 

the exact same parameters as the analysis run for the symmetric sea level pressure 

analysis to include element profile, element type, number of elements, material 

properties, geometry, tie constraints, boundary conditions, and step conditions. The 

only option changed within the analysis was the load applied, which was as applied as 

described previously in this section. The reason a stagnation pressure is used over an 

entire hemisphere is because it shows the reaction of the structure to a worst case 

scenario which would not be seen operationally. This allows the aerodynamic 

analysis of the VLTAV to be conducted on a model which is deformed consistent 

with a sea-level atmospheric pressure on the outside with an internal vacuum.  

The stagnation pressure used assumes the flow over the VLTAV is 

incompressible which is approximately below 0.3 Mach. This is equivalent to 

103.266 𝑚𝑚
𝑠𝑠

 for an environment in which the speed of sound is 344.668 𝑚𝑚
𝑠𝑠

. The 

incompressible assumption is valid due to the fact that the velocities used for this 

research’s purposes are well below half of the compressible threshold. The equation 

for calculating the stagnation pressure for a given velocity, air density, and static 

pressure is shown below.  
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𝑃𝑃𝑆𝑆𝑆𝑆𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑆𝑆𝑖𝑖𝑜𝑜𝑆𝑆 =

1
2
𝜌𝜌𝑣𝑣2 + 𝑃𝑃𝑠𝑠𝑆𝑆𝑎𝑎𝑆𝑆𝑖𝑖𝑠𝑠 ( 5 ) 

In this equation, 𝑃𝑃 is the pressure whether stagnation or static, 𝜌𝜌 is the air density 

(for the purpose of this research, the air density of an elevation associated with AFIT 

was used), and 𝑣𝑣 is the airspeed velocity. For a velocity of 17.8816 𝑚𝑚
𝑠𝑠

, it was 

determined that a stagnation pressure of 101,509 Pa is endured. Figure III-5 and 

Figure III-6 show the loads applied to the celestial icosahedron with the stagnation 

pressure hemisphere and the sea-level pressure hemisphere respectively. The addition 

of the stagnation pressure on the left hemisphere is the difference between the loads 

highlighted in the figures.  
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Figure III-5. Stagnation pressure hemisphere 

Figure III-6. Sea-level atmospheric pressure hemisphere 

 



51 

3.4 Convert Structural Analysis Mesh to Solid Body 
The deformed mesh created from the structural analysis conducted in Abaqus is 

exported as a point cloud file of deformed nodal positions into the SolidWorks 

computer-aided design (CAD) software. The add-in ScanTo3D within SolidWorks 

allows for producing a solid body structure through mapping surfaces onto the point 

cloud and adding thickness to those surfaces. Once a solid body form of the deformed 

structure is produced, SolidWorks is used to post process the geometry for use in 

wind tunnel testing.  

First, a point cloud file of the deformed nodal positions after the structural 

analysis is complete must be exported from Abaqus. Due to the fact that the 

converged mesh from a geometric standpoint is relatively coarse, an interpolation 

function in MATLAB is used to smooth the contours of the point cloud file from 

Abaqus. The interpolation function interpolates nodal coordinates in a spherical 

coordinate system using natural neighbor interpolation methods. The script can be 

found in Appendix A. The results of applying this MATLAB function to the point 

cloud file exported from the structural analysis are shown in Figure III-7 and Figure 

III-8. As is evident in this figure, the original export is coarse and it is difficult to pick 

out the nodal points. The interpolated point cloud has much finer resolution for 

converting into a solid model.  

After the interpolation function provides finer resolution, the new point cloud is 

imported into the SolidWorks ScanTo3D add-in for conversion to a solid body. The 

Mesh Prep and Surface wizards within the add-in add physical geometry to the point 

cloud file by draping surfaces over the x-y-z points within the point cloud. These 
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surfaces can be thickened to create a solid body to be utilized for printing a wind 

tunnel model or conducting a CFD analysis as was done in this research. The finished 

product from converting the deformed mesh from the structural analysis to a solid 

body shape is shown in Figure III-9. The solid body shape in the figure had a 

diameter of 0.2032 m and the surface was thickened by 0.00635 m to create a solid.  

 

Figure III-7. Nodal coordinates of structural analysis mesh prior to point cloud 
interpolation using MATLAB function 
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Figure III-8. Results of applying point cloud interpolation using MATLAB function 
to the structural analysis mesh 
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Figure III-9.Deformed VLTAV post conversion from structural analysis mesh to 
solid body 

3.5 Additive Manufacturing of Tunnel Articles 
In order to ensure that the conducted experiments for the deformed celestial 

icosahedron are accurate, first the method through which aerodynamic effects would 

be measured needed to be validated. Because the aerodynamics of a complete sphere 

are well known and well documented, a perfect sphere is manufactured and tested to 

ensure that the set-up for the experiments produces accurate results. Figure III-10 and 

Figure III-11 show the bottom and top, respectively, of the sphere which will be 

printed and tested against data correlation calculations. The spherical model had a 
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diameter of 0.3048 m and a wall thickness of 0.0127 m. The diameter of the deformed 

shape, as mentioned in the previous section was reduced to 0.2032 m. The reduction 

in diameter is a result lessons learned from the spherical model. For example, the 

0.3048 m diameter spherical model vibrated significantly at higher tunnel velocities. 

The diameter of the deformed tunnel model was reduced in attempt to mitigate these 

vibrations which did result in a much lower level of vibrations during testing. Another 

contributing factor to the vibration of the perfectly spherical model was the diameter 

of the channel which the force balance fit into. The channel was made to be a slightly 

larger diameter than the force balance itself in order to ensure the force balance could 

be inserted. Since it was not a perfect fit, the model was able to vibrate in the tunnel. 

The diameter of the channel was reduced for the deformed shape in order to reduce 

the vibration as well. 

 

Figure III-10. Bottom portion of perfect sphere test article 

Channel for Force Balance 
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Figure III-11. Top portion of perfect sphere test article 

The sphere is split into two sections in order to mount the model into the wind 

tunnel. The channel seen running through the bottom portion of the sphere is where 

the force balance is inserted into the sphere so the test article can be mounted. The 

female and male connections on the top of the bottom portion and the bottom of the 

top portion respectively provide support to the seam where the two portions of the 

sphere connect. Also, pressure taps have been added to the outer surface of the sphere 

so that pressures on the surface of the sphere can be measured. A reasonable number 

of pressure taps needed to be added in order to compare the experimental results to 

the results in CFD analysis. For this purpose, 16 pressure taps were used 

symmetrically placed around the model. This allowed enough data points for 

comparison against CFD results. Also, more taps were not added to ensure the tubing 
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did not interfere with mounting the model in the tunnel. All of these features are also 

included in the final deformed model from which the results of this thesis are based. 

Once printed, this perfectly spherical model is tested in the wind tunnel and compared 

to analytical results to determine if the test setup is correct. 

In order to manufacture the test article, the SolidWorks file of the solid body is 

exported as a .STL file, which is a file type that describes only the surface of an 

object through tessellation, and imported into the 3D printing software. The AFIT 

additive manufacturing facility’s Objet Eden 500V 3D printer was used to additively 

manufacture the perfect sphere test article. The material used was Stratasys’ 

VeroClear rigid transparent polyjet material. 

Figure III-12. Objet Eden 500V 3D printer 

The build of the perfectly spherical model consisted of approximately 1500 layers 

consuming 6.765 kg of model material as well as 11.406 kg of support material. The 

build took approximately 47 hours for the bottom of the sphere and 29 hours for the 

top of the sphere with a total material cost of $1900. Figure III-13 shows the bottom 
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of the sphere as a finished product on the printer and shows a part of the post-

processing.  

Figure III-13. Post processing of the bottom portion of the perfectly spherical model 

3.6 Validation of Experimentation and Analysis Methods 
As mentioned previously, the purpose of conducting analysis and experiments 

with the perfectly spherical model is to validate the methods of experimentation and 

CFD analysis. By analyzing the sphere in the wind tunnel and in CFD, a comparison 

to analytical data can be made to determine if the methods for testing are valid. Also, 

the interfaces between structural and CFD analyses could be tested with respect to 

exporting and importing models into separate software packages.  

Putty knife used for post 
process removal of support 
material 
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The sphere is analyzed in the wind tunnel and in the CFD software to compare to 

the analytical data presented in aerodynamic analysis section of the theory chapter. If 

the data collected from both CFD and wind tunnel analysis agree with the analytical 

data, then the design of the wind tunnel test article and the methods used for CFD 

analysis are validated. The validation of the test methods offers confidence in the data 

collected from analyzing the deformed VLTAV in the wind tunnel as well as CFD.  

Secondly, the sphere test case provides insight into how a model can be exported 

and imported from different software packages for analysis. Ultimately, the deformed 

VLTAV model is analyzed in Abaqus, made into a solid model in SolidWorks, and 

aerodynamically analyzed in the ANSYS Fluent software. The interfaces between 

these separate software packages had to be understood and established. The spherical 

model provided an understanding and a validation of these interfaces between 

software packages. Since the perfectly spherical model built in SolidWorks was 

imported into the Fluent software and analyzed successfully, it was apparent that the 

same could be said for the deformed VLTAV model once the deformed shape was 

produced. 

3.7 Incorporating Aerodynamic Effects to Structural Analysis 
The goal of the research associated with this thesis is to understand the fluid-

structure interaction for a celestial icosahedron VLTAV. In order to understand this 

interaction, a method for incorporating the aerodynamic forces and pressures into the 

structural analysis had to be developed. The method chosen for doing so uses the 

point cloud file of pressure data exported from the CFD analysis as a custom load 

within the structural analysis software to be run as a secondary step once the sea-level 
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pressure has been applied simulating the evacuation of air to create an internal 

vacuum.  

One of the products provided by Wright State University from the CFD analysis 

is a point cloud file of pressure distribution for each velocity at which the CFD model 

was run. The point cloud file provides an x, y, and z spatial location on the surface of 

the model with an associated pressure at that point. This pressure point cloud file is 

converted into a custom defined load within Abaqus for the structural analysis. Figure 

III-14 shows the distributed load applied consistent with the pressure distribution for 

the case of the perfect sphere. 

Figure III-14. Pressure field applied as distributed load in Abaqus 
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The pressure is provided as a differential from atmospheric pressure, therefore the 

method for applying the differential pressure load from aerodynamic effects includes 

applying the load in a secondary step within the analysis after the atmospheric 

pressure has been applied to simulate the internal vacuum. 

Within the Abaqus load module, the point cloud data is read in as an analytical 

mapped field. Analytical mapped fields allow you to apply spatially varying load 

cases to a structural analysis. The Abaqus Online Documentation states, “For 

example, you can [using analytical mapped fields] define a spatially varying shell 

thickness or pressure load by providing the thickness or pressure values at different 

coordinates”. The mention of applying spatially varying pressure values is exactly 

what this research is trying to accomplish with the point cloud file exported from 

CFD. [18] 

3.8 Summary 
This chapter describes the research methodology and the approach to 

experimentation for this thesis. An overview of the finite element model is provided 

to gain an understanding of how the VLTAV is analyzed from a structural analysis 

point of view. The method for providing confidence in the assumptions for the thesis 

is provided in the stagnation pressure scenario section. The method for converting the 

structural analysis model to a solid body model and the means for manufacturing a 

wind tunnel test article details how the wind tunnel model was created. The validation 

of the wind tunnel setup explains how confidence in the experimental and 

computational analysis was built. Lastly, the section on incorporating aerodynamic 

effects to structural analysis conveys how the CFD data is used within the structural 
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analysis to provide the results of the fluid-structure interaction. The methods 

presented in this chapter led to results outlined in the next chapter. 
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IV. Results and Discussion 

4.1 Chapter Overview. 
This chapter addresses the results from the research associated with this thesis. 

The topics include the results from the validation of experimental methods, the results 

from the stagnation pressure comparison, the results from comparing the CFD data to 

the wind tunnel data, and lastly the results from the structural analysis after 

incorporating aerodynamic effects. The results are discussed in each of the sections to 

provide an interpretation of what the results mean in the context of this research. 

4.2 Validation of Experimentation and Analysis Methods 
In order to validate the methods for wind tunnel experiments and computational 

analyses, the test case of a perfect sphere was analyzed in the wind tunnel as well as 

in the CFD analysis tools. The aerodynamics of a perfect sphere are well known and 

documented in literature as described within the theory chapter of this thesis. The 

available data was compared with CFD and wind tunnel data to support the validation 

of methods used. Due to time constraints and schedule deconfliction within the wind 

tunnel, the pressure data for the perfect sphere case was not taken, but instead drag 

data was used to compare to available data for a perfect sphere. Figure IV-1 shows 

the experimental drag forces experienced in the wind tunnel compared to the 

analytical results from utilizing the drag coefficient equation from the data correlation 

provided by Morrison [23]. As is evident from the plot, the drag peaks and decreases 

in the experimental data before the analytical data. This is largely attributed to the 

fact that the analytical data is correlating drag data for a perfectly smooth sphere. The 

model used in wind tunnel testing for the experiment was additively manufactured 
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using the plastic printer in AFIT’s additive manufacturing lab, and as a result of post 

processing does not have a completely smooth finish.  

 

Figure IV-1. Drag force vs. velocity for analytical and experimental data on a 
perfect sphere  

Cimbala states in his paper for drag on spheres, “Oftentimes it is desirable to have 

a very low drag coefficient so that the [sphere] can travel faster through the air. For 

cases where Reynolds number is not high enough for the drag crisis to occur natural, 

artificial roughness is often added to the sphere surface” [29]. This partially explains 

why the drag force lowers in the experimental data at a lower velocity than the 

analytical. It is because the relatively rough test article is tripping the flow into 

turbulent flow prior to the smooth sphere therefore causing an earlier drag crisis. 

However, at lower velocity in the laminar range, the experimental drag force 
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compares well with the analytical drag force therefore adding validity to the 

experimental setup.  

The difference in drag crisis from analytical to experimental is more readily 

apparent in Figure IV-2. Figure II-7, earlier in the theory chapter shows that the drag 

crisis occurs where there is a sudden drop in drag coefficient as Reynolds number is 

increased. The error associated with the values in Figure IV-2 is derived from the 

error reported in the axial force values in the documentation for the force balance. 

 

Figure IV-2. Drag coefficient v. Reynolds number comparing analytical, 
experimental, and experimental corrected data 
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Figure IV-3. Effect of surface roughness on the drag coefficient of a sphere [29] 

The comparison clearly shows a drop in drag coefficient for experimental data at 

a lower Reynolds number as compared to the analytical data. It is also important to 

note that the drag crisis did not happen as early as it would on a dimpled surface such 

as a golf ball as shown in Figure IV-3. Since the data lies within that range, it is safe 

to assume that the difference can be attributed to surface roughness. The data would 

be generally consistent with the 𝜖𝜖
𝐷𝐷

= 1.5 𝑥𝑥 10−3 curve from Figure IV-3. The data for 

a relative roughness value of 𝜖𝜖
𝐷𝐷

= 1.5 𝑥𝑥 10−3 is overlaid in Figure IV-2 to show the 

experimental data experienced a drag crisis at approximately the same Reynolds 

number. 

Also, Figure IV-2 shows that the experimental data corrected for solid body 

blockage does not differ significantly from the experimental data itself within the 
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AFIT low speed wind tunnel. This effect was predicted within the theory chapter of 

the thesis. Since the perfectly spherical model has a blockage ratio of approximately 

8% it was reasonable to expect there would not be any change in the data. 

4.3 Stagnation Pressure Comparison 
As stated previously, the stagnation pressure scenario allows for comparison of a 

perfectly symmetric sea level pressure load applied to the VLTAV and an asymmetric 

pressure load applied consisting of stagnation pressure at 17.8816 𝑚𝑚
𝑠𝑠

 applied to one 

hemisphere and atmospheric pressure applied to the other. Figure IV-4 and Figure 

IV-5 show the displacements of both of the hemispheres. 
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Figure IV-4. Displacement of the hemisphere with stagnation pressure applied 
(101,509 Pa) 
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Figure IV-5. Displacement of the hemisphere with sea level pressure applied 
(101,325 Pa) 

From the maximum displacements displayed in the legend, it is evident that the 

hemisphere with only sea level pressure applied is displaced less than the hemisphere 

with the stagnation pressure applied.  

 

Table IV-1 tabulates the maximum pressure on each of the hemispheres along 

with the percent difference.  
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Table IV-1. Maximum displacement of each hemisphere of stagnation pressure 
scenario 

Stagnation Pressure Displacement (m) Sea Level Pressure Displacement (m) 
Percent 

Difference (%) 

4.761𝑥𝑥10−2 4.681𝑥𝑥10−2 1.7 

 

This is a small percent difference and on the order of fractions of a millimeter in 

magnitude. Therefore, the difference in maximum displacement for the two pressure 

distributions is not significant enough to be of a concern when manufacturing the 

wind tunnel model. This shows that that the assumption made in the theory chapter of 

using a sea level pressure applied symmetrically over the entire celestial icosahedron 

in the analysis used to create the deformed model for wind tunnel analysis is a valid 

means of approaching the problem. The next section discusses another study 

conducted based on future work recommended by Kyle Moore in his research. 

4.4 Follow-On Automatic Stabilization Study  
As Moore was conducting Finite Element Analyses on the skin and frame of a 

celestial body at differing diameters, he noticed a phenomena of dramatic change in 

deformation as the load was applied in the results. Since this membrane response had 

not been observed previously, a study was carried out to determine the origin. As he 

post-processed the results, he tracked a point on the skin and documented the 
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displacement of that point as it deformed through the steps of the analysis. A similar 

approach was taken for this study.  

The objective of this study is to determine if the values for the automatic 

stabilization tool affect this phenomena. For the original model, the default values of 

0.0002 for the dissipated energy fraction and 0.05 for the maximum ratio of 

stabilization to strain energy were used.  

It is assumed that analyzing a singular section of Moore’s model with the same 

parameters that he used is sufficient for the purposes of the analysis. Figure IV-6 

shows a section of Moore’s model that was used for computational efficiency. 

Most of the model parameters were consistent with Moore’s model to include 

element cross sections, element types, element number, load type, and tie constraints. 

However, new boundary conditions had to be considered for the analysis. It was 

determined that since the beams themselves deflect, the most appropriate boundary 
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condition for the study would be to apply translational constraints at the three vertices 

of the triangle but not rotational constraints as shown in Figure IV-7. 

 Figure IV-6. Section of celestial icosahedron analyzed for the analysis 

Figure IV-7. Translational boundary conditions applied to the triangular section for 
analysis 

Figure IV-8 shows the node which is tracked as the analysis is carried out to 

document the displacement as the load is applied. The displacements shown in the 

figure are in meters. 
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Figure IV-8. Location of the tracked point on the skin [1] 

Through plotting the results of the displacement at this point, as shown in Figure 

IV-9, the same phenomena that Moore observed is apparent under 10% of sea-level 

applied pressure. The skin reduces in deformation before continuing in a nonlinear 

fashion to 100% of sea-level pressure. The movement indicates a dramatic snapping 

effect. 
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Figure IV-9. Plot of deformation v. the fraction of sea-level pressure applied for the 
triangular section model 

It is observed that physically, since the membrane and frame are tied together 

through a constraint, the membrane is following the beam deflection as well as 

experiencing its own deflections. The results for displacement observed along the 

edge of the other members of the frame show the same behavior as observed in 

Figure IV-9. 

The deformed geometry observed throughout the runs deforms in a way that 

would physically be expected. As the model was run through the steps, the skin 

deformed at a higher rate than the frame due to the fact that the skin is less stiff. The 
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maximum displacement of the skin, depending on which run was conducted, was 

approximately 8𝑥𝑥10−3𝑚𝑚.  

The FE model was constructed with the geometries of the physical frame and 

membranes in mind. The frame is constructed with a pipe cross section consisting of 

a radius of 2.22829𝑥𝑥10−3𝑚𝑚 and a 1.11415𝑥𝑥10−4 thickness. The material properties 

for the frame are set at 1250 𝑘𝑘𝑆𝑆
𝑚𝑚3 density and 293𝑥𝑥109 Pa for Young’s Modulus with a 

Poisson’s Ratio of 0.33. The skin is constructed as a membrane with a 

1.92464𝑥𝑥10−5 𝑚𝑚 thickness. The material properties for the skin are set at 2000𝑘𝑘𝑆𝑆
𝑚𝑚3 

density and 500𝑥𝑥109 Pa for Young’s Modulus and a Poisson’s Ratio of 0.33. The 

weight of the frame accounts for approximately 98.9% of the total weight whereas the 

skin accounts for approximately 1.1% of the total weight of the structure. 

The same phenomenon from Moore’s thesis is observed in the runs for this 

analysis at approximately 7% of the total applied load (sea-level pressure). As the 

values of the maximum ratio of stabilization to strain energy are varied, the results of 

the phenomena region (as shown in Figure IV-9) of the displacement seem to be 

unaffected. The same structural analysis model was run for differing values of 

maximum ratio of stabilization to strain energy, dissipated energy fraction, and the 

structural damping of the skin. The structural damping was varied to determine if it 

could have an effect on the region as well. The theory behind the adaptive 

stabilization technique can be found in the structural analysis section of the chapter 

on theory. Table IV-2 below shows the parameters that were varied. As each 

parameter was varied, the other parameters within the table were held constant. 
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Through varying all of these parameters, there was not a significant effect on the 

region of large changes in deformation for less than 10% of the load applied.  

Table IV-2. Parameters varied for automatic stabilization study 

Dissipated Energy 
Fraction 

Maximum Ratio of 
Stabilization to Strain 

Energy 

Structural Damping of 
Skin 

0.0001 0.001 0.05 

0.0002 0.01 0.1 

0.0005 0.05 0.2 

0.001 0.1 0.25 

0.005 0.5 0.5 

 

Since the varying of the parameters did not significantly affect the region of large 

changes in deformation, there is more confidence in the realization that the 

observation is a physical phenomenon. As discussed previously the physical effect 

causing this rapid change in deformation is most likely attributed to a wave type 

motion in the membrane as the load is applied. Now that more confidence is built into 

the structural analysis model, the CFD data for the deformed shape must be compared 

to wind tunnel data in order to build confidence in the CFD data. 

4.5 CFD Comparison to Wind Tunnel  
In order to use the CFD data for incorporation into the structural analysis model to 

study the effects of aerodynamic pressures, the CFD data is compared to wind tunnel 

results of the deformed VLTAV model to determine if the CFD data is reasonable. 

The first comparison made is the pressures measured at the ports on the wind tunnel 
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model compared to the pressures reported in the CFD analysis point cloud file. In 

order to compare the pressures from the wind tunnel results to the CFD data, the 

closest point in the CFD mesh to a certain pressure port on the wind tunnel model had 

to be determined. A MATLAB script was developed to find and compare pressure 

data between the CFD and wind tunnel data at the x, y, and z spatial position of each 

of the pressure ports. The MATLAB script can be found in Appendix B. 

Figure IV-10 shows the spatial positions of each pressure port on the wind tunnel 

model within SolidWorks. The pressure ports were distributed evenly and 

symmetrically throughout the structure. The MATLAB script described in the 

previous paragraph was necessary to relate CFD and experimental data because while 

there were 16 data points experimentally, the CFD results exported thousands of data 

points for pressure due to the fineness of the mesh. 



78 

 

Figure IV-10. Spatial orientation of pressure ports on the wind tunnel structure 

The comparison between the pressure output from the CFD analysis provided by 

Wright State University and the measured experimental pressures are provided for 

velocities of 50 mph (22.352𝑚𝑚
𝑠𝑠

) to 100 mph (44.704𝑚𝑚
𝑠𝑠

). The wind tunnel was run at 

lower velocities but the data at lower velocities is not shown because the error 

associated with the pressure scanner data acquisition system is above 15% of the 

measured values so there is not enough confidence in the experimental results. The 
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data for lower velocities with error reported can be seen in Appendix C. The figures 

below show the comparison between CFD and experimental results. 

Figure IV-11. Comparison of pressure data from CFD analysis and experimental 
results for 50 mph 

Figure IV-12. Comparison of pressure data from CFD analysis and experimental 
results for 60 mph 
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Figure IV-13. Comparison of pressure data from CFD analysis and experimental 
results for 70 mph 

Figure IV-14. Comparison of pressure data from CFD analysis and experimental 
results for 80 mph 

Figure IV-15. Comparison of pressure data from CFD analysis and experimental 
results for 90 mph 
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Figure IV-16. Comparison of pressure data from CFD analysis and experimental 
results for 100 mph  

The pressure profiles shown in each of the comparisons for velocities tested and 

analyzed are consistent between experimental and CFD data. It is evident from the 

figures, however, that the magnitude of the pressures vary between CFD analysis and 

experimentation. The magnitudes for pressure in the experimental data are 

consistently less than the pressure exported from the CFD analysis. This could be 

attributed to a number of factors. First, the CFD analysis did not analyze the 

deformed VLTAV structure within a simulated wind tunnel or with a mounting 

structure behind the VLTAV. The CFD analysis was conducted assuming freestream 

flow around the structure without any attachments or wind tunnel boundaries 

modeled as shown in Figure II-13. Also, the CFD analysis assumes a perfectly 

smooth surface. The additively manufactured model, however, does not create a 

structure with a perfectly smooth surface which could account for some of the 

pressure magnitude losses. The coefficient of drag for the deformed shape was also 

compared to the original data correlation for a perfect sphere, but the comparison was 

not included in the body of this thesis. The data is included in Appendix C to show 
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the shift in the drag crisis as is expected for a deformed shape. The data is included in 

the appendix because the results in the final structural analysis shown in the 

subsequent section are based off of the pressure profile not the drag data. 

4.6 Structural Analysis with Aerodynamic Effects 
As a result of the pressure profiles of CFD and wind tunnel data matching well, 

there is high confidence in the pressure profile provided from CFD analysis. The CFD 

data provides higher fidelity in the pressure profile on the surface of the deformed 

VLTAV structure as compared to the 16 data points collected at each velocity from 

wind tunnel results. The higher fidelity provided from the CFD analysis is ideal for 

creating the pressure distribution on the surface of the membrane when conducting 

the structural analysis in Abaqus. Figure IV-17 indicates the results from the 

structural analysis with aerodynamic effects considered for the celestial icosahedron 

VLTAV.  

Figure IV-17. Maximum von Mises stress in the frame and membrane of the 
celestial icosahedron VLTAV with aerodynamic pressure applied 
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The results shown are associated with a structural analysis conducted on the 

celestial icosahedron VLTAV with a pressure profile applied representative of 

approximately 15.6 𝑚𝑚
𝑠𝑠

 (35 mph) flow. This is the highest equivalent velocity for 

which data was taken during wind tunnel analysis. Table IV-3 shows the comparison 

of the von Mises maximum stress in the frame and in the membrane with the material 

properties of CNT composite and graphene for the frame and membrane respectively. 

Table IV-3. Material properties compared to structural analysis results 

Material Yield Stress (GPa) Maximum Stress From Analysis (GPa) Factor of Safety 

CNT 
(Frame) 

3.8 1.8 2.1 

Graphene 
(Membrane) 

50 30.8 1.6 

 
The results from the structural analysis with aerodynamic effects applied shows 

the factor of safety for the frame and the membrane are above 1.5. The addition of the 

pressure profile from the CFD data does not significantly affect the maximum stress 

in the frame or membrane to reduce the factor of safety below 1.5. 

4.7 Summary 
The results presented in this chapter show the effect of applying the initial step of 

a fluid-structure interaction to the celestial icosahedron VLTAV. The studies 

conducted to include validation of experimentation, stagnation pressure comparison, 

and the follow-on automatic stabilization study show confidence in the experimental 

setup as well as the analysis methods used in the research conducted for this thesis. 

The results from comparing CFD and wind tunnel results show agreement between 
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the pressure profiles provided by each data set. Therefore, the CFD data provided an 

adequate representation of the pressures on the deformed VLTAV which were used as 

an input into the structural analysis model. The structural analysis of the celestial 

icosahedron VLTAV with aerodynamic pressures applied did not show significant 

degradation of the factor of safety for the frame or membrane. 

V. Conclusions and Recommendations 

The results demonstrated that the wind tunnel setup is validated through the 

analysis of the perfectly spherical model. The assumption that aerodynamic effects 

have limited significance on the deformation of the VLTAV is validated through the 

stagnation pressure scenario analysis. The region of large deformation in the 

membrane at low loads is determined to be a physical phenomenon by conducting the 

automatic stabilization study. The CFD data is validated through the comparison with 

wind tunnel pressure profiles. Lastly, the structural analysis of the celestial 

icosahedron VLTAV with aerodynamic pressures applied indicates an insignificant 

change in maximum stress and therefore does not reduce the factor of safety below 

1.5. 

The analysis and wind tunnel experiments with the perfect sphere show that the 

model used for experimentation is a reasonable design. Since a wind tunnel model 

had to be designed for analyzing the deformed VLTAV structure, first a spherical test 

article with interfaces for the AFIT wind tunnel was designed. This test article 

allowed for the identification of design flaws before manufacturing a test article for 

the deformed structure. Also, it provided confidence in the experimental data of the 
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deformed body because the sphere’s experimental data could be compared to 

previously published data. The comparison of the experimental data with previously 

published data revealed that the test article design was valid and could be used as a 

baseline for the deformed shape.  

The structural analysis, which took into account the stagnation pressure for a 

17.8816𝑚𝑚
𝑠𝑠

 airflow applied to one hemisphere of the structural model, provided 

confidence in some of the assumptions that were made. One assumption made was 

that the VLTAV structure would not significantly deform due to aerodynamic effects 

as compared to the structural load the vehicle endures due to the internal vacuum. 

This assumption was validated through the stagnation pressure scenario because 

applying a stagnation pressure to one hemisphere only increased the deformation by 

approximately 1%. 

In the research conducted by Kyle Moore, he experienced a phenomenon in which 

the deformation of the membrane initially changed drastically in a structural analysis 

of the VLTAV where the load applied was less than 10% of sea level pressure. In 

Moore’s future research section he proposed, “The behavior observed in this research 

may be due to numerical inaccuracies within the finite element model, or it could be 

the product of some physical phenomena not yet known” [1]. The study conducted on 

a small triangular portion of the VLTAV demonstrated the same phenomenon while 

allowing for more efficient run times. The analysis varied parameters within the 

adaptive automatic stabilization tool within Abaqus to determine if the phenomenon 

was numerical or physical. Since varying the parameters did not have an effect on the 

region, it is presumed that the phenomenon is a physical one.  
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The CFD and experimental results were compared to determine if the CFD results 

could be used within the structural analysis of the VLTAV to gain an understanding 

of the fluid-structure interaction of airflow around the vehicle. The CFD pressure 

profile matched the experimental results well at higher velocities where the sensitivity 

in the pressure scanner had high fidelity compared to the pressures measured. 

Therefore, the CFD pressure profile can be used to analyze the structural response to 

the fluid flow around the VLTAV.  

Lastly, after analyzing the pressure profile as a load within the structural analysis 

model, the results showed that the structural integrity of the celestial icosahedron 

VLTAV was not significantly affected. For the atmospheric conditions considered in 

this research, the structural analysis indicates that the VLTAV does not experience 

high enough stress to be at risk of collapse. Therefore, it is concluded that a full 

nonlinear fluid-structure interaction analysis is not necessary for the celestial 

icosahedron design. The aerodynamics do not significantly affect the stress in the 

structure compared to the stress associated with a symmetrically applied atmospheric 

pressure which simulates an internal vacuum in the structure. 

After conducting the research for this thesis, it is recommended that CFD analysis 

be conducted for a much higher velocity than what was represented in this thesis. The 

effective air velocity researched in this thesis was approximately 15 𝑚𝑚
𝑠𝑠

 (35 mph). This 

is because the wind tunnel has a constraint on airspeed. However, because confidence 

in the CFD model was shown, the CFD model could be run at higher velocity to 

ensure the conclusions stated previously are valid for a higher velocity. 
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Appendix A. Matlab interpolation file 

Point Cloud Interpolation to Create Finer Cloud 
clc;clear all; close all 

Inputs 
gridsize         = 200; % total cloud points = gridsize^2 

numInterpSteps   = 200;  % Number of interpolation steps ("equitorial bands") 

interpMethod     = 'natural'; % Interpolation method, methods: 'natural', 'linear', 

'nearest', 'cubic' 

input_file_name  = 'Cylinder'; % name of file containing x,y,z points (no headers) 

Point Cloud Interpolation 
PC = importdata([input_file_name '.txt']); 

[az,el,r] = cart2sph(PC(:,1),PC(:,2),PC(:,3)); 

    % az = azimuth angle, counterclockwise in the x-y plane in radians from the positive 

x-axis, within [-pi pi] 

    % el = elevation angle in radians from the x-y plane, within [-pi/2, pi/2] 

    % r  = radius 

PCs = [az,el,r]; % Original point cloud in spherical coordinates 

 

% New Grid Points (Angles) 

azq   = linspace(-pi,pi,gridsize)'; 

elq   = linspace(-pi/2,pi/2,gridsize)'; 

count = 1; 

AZEL  = zeros(length(elq)*length(azq), 2); 

for j = 1:length(azq) 

    for k = 1:length(elq) 

        AZEL(count,:) = [azq(j) elq(k)]; 

        count = count + 1; 

    end 

end 

azq = AZEL(:,1); 

elq = AZEL(:,2); 

 

% Interpolation (Radius) 

[rq,C] = interp_spherical(az,el,r,azq,elq,interpMethod,numInterpSteps); 

[xq,yq,zq] = sph2cart(azq,elq,rq); 

PCq = [xq,yq,zq]; 

Plot 
figure 

subplot(1,2,1) 

    pcshow(PC); 

    title('Original'); xlabel('x'); ylabel('y'); zlabel('z') 

subplot(1,2,2) 

    hold on 

    pcshow(PCq); 
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    title('Interpolated'); xlabel('x'); ylabel('y'); zlabel('z') 

    hold off 

New Point Cloud Save 
fid = fopen([input_file_name '_' num2str(length(xq)) 'points' '.txt'],'wt'); 

for ii = 1:size(PCq,1) 

    fprintf(fid,'%g\t',PCq(ii,:)); 

    fprintf(fid,'\n'); 

end 

fclose(fid); 

Published with MATLAB® R2016a 
  

http://www.mathworks.com/products/matlab
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Interpolate into Spherical Coordinate System 
function [varargout]=interp_spherical(varargin) 

% function [Ri,Ci]=interp_spherical(T,P,R,Ti,Pi,interpMethod,numberInterpSteps) 

% ------------------------------------------------------------------------ 

% The function |interp_spherical| interpolates in a spherical coordinate 

% sytem using standard interp2 type inter"equator" such that polar artifacts 

% can be minimized. For each interpolapolation methods or those based on 

% Delaunay tesselations in the angular space such as natural neighbour 

% interpolation method. Standard spherical interpolation of this type 

% creates artifacts at the poles. Hence |interp_spherical| splits the 

% interpolation up into a number of steps (set by numberInterpSteps). The 

% function aims to interpolate at the tion step the interpolation problem is 

% rotated such that the currect "equatorial band" is centered at the 

% equator. 

% 

% Kevin Mattheus Moerman 

% gibbon.toolbox@gmail.com 

% 

% Change log: 

% 2017/09/13 Removed demo mode. Improved input parsing 

% 

%------------------------------------------------------------------------ 

Parse input 
switch nargin 

    case 5 

        T=varargin{1}; 

        P=varargin{2}; 

        R=varargin{3}; 

        Ti=varargin{4}; 

        Pi=varargin{5}; 

        interpMethod='natural'; 

        numberInterpSteps=10; 

    case 6 

        T=varargin{1}; 

        P=varargin{2}; 

        R=varargin{3}; 

        Ti=varargin{4}; 

        Pi=varargin{5}; 

        interpMethod=varargin{6}; 

        numberInterpSteps=10; 

    case 7 

        T=varargin{1}; 

        P=varargin{2}; 

        R=varargin{3}; 

        Ti=varargin{4}; 

        Pi=varargin{5}; 

        interpMethod=varargin{6}; 

        numberInterpSteps=varargin{7}; 

    otherwise 
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        error('Wrong number of input arguments'); 

end 

if numberInterpSteps==1 

    [Ri]=interp_spherical_part(T,P,R,Ti,Pi,interpMethod); 

    switch nargout 

        case 1 

            varargout{1}=Ri; 

        case 2 

            varargout{1}=Ri; 

            varargout{2}=Ri; 

    end 

else 

    %Getting source vertices 

    V=zeros(size(R,1),3); 

    [V(:,1),V(:,2),V(:,3)] = sph2cart(T,P,R); 

 

    %Getting target vertices 

    Vi=zeros(size(Pi,1),3); 

    [Vi(:,1),Vi(:,2),Vi(:,3)] = sph2cart(Ti,Pi,ones(size(Pi))); 

 

    %Determine the rotation settings 

    rotationRange=linspace(0,pi,numberInterpSteps+1); 

    rotationRange=rotationRange(1:end-1); 

    phiThreshold=diff(rotationRange(1:2))/2; 

 

    %Step wise spherical interpolation around equator 

    indDone=[]; 

    Ri=ones(size(Vi,1),1); 

    Ci=ones(size(Vi,1),1); 

    for q=1:1:numberInterpSteps 

        %Rotate so that points of interest are at equator 

        [DCM,~]=euler2DCM([rotationRange(q) 0 0]); %Direction cosines matrix 

        Vr=V*DCM; %Rotated source vertices 

        Vri=Vi*DCM; %Rotated target vertices 

 

        %Convert to spherical coordinates 

        [Tr,Pr,Rr]=cart2sph(Vr(:,1),Vr(:,2),Vr(:,3)); %Source 

        [Ti,Pi,~]=cart2sph(Vri(:,1),Vri(:,2),Vri(:,3)); %Target 

 

        %Get indices for the current target vertices 

        indDoNow=find(Pi>=-phiThreshold & Pi<=phiThreshold); 

        indDoNow=indDoNow(~ismember(indDoNow,indDone)); %remove ones done already 

 

        %Interpolate region 

        [Ri_step]=interp_spherical_part(Tr,Pr,Rr,Ti(indDoNow),Pi(indDoNow),interpMethod); 

        Ri(indDoNow)=Ri_step; %Setting new radii 

        Ci(indDoNow)=q; %Store iteration index for current points 

 

        indDone=unique([indDone; indDoNow]); %Adding vertix indices to done list 

    end 

 

    varargout{1}=Ri; 
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    varargout{2}=Ci; 

 

end 

end 

function [Ri]=interp_spherical_part(T,P,R,Ti,Pi,interpMethod) 

%Tesselate data above, below, left and right to aid interpolation (and 

%avoid some polar- and edge artifacts) 

T=[T+2*pi; T+2*pi; T+2*pi; T; T; T; T-2*pi; T-2*pi; T-2*pi]; 

P=[P-pi; P; P+pi; P-pi; P; P+pi; P-pi; P; P+pi]; 

R=repmat(R,[9,1]); 

 

%Removing double points 

fRound=1e5; %Rounding factor for unique test 

[~,indUni,~]=unique(round([T P R]*fRound)/fRound,'rows'); 

P=P(indUni); 

T=T(indUni); 

R=R(indUni); 

 

if strcmp(interpMethod,'natural') || strcmp(interpMethod,'linear') || 

strcmp(interpMethod,'nearest') %TriScatterdInterp function 

    F_delaunay=scatteredInterpolant([T P],R,interpMethod); %interpolator 

    Ri=F_delaunay([Ti Pi]); 

elseif strcmp(interpMethod,'cubic') %Griddata function 

    Ri = griddata(T,P,R,Ti,Pi,interpMethod); 

else 

    error('Invalid interpolation method. The following methods are supported: linear, 

nearest, and cubic') 

end 

end 

GIBBON footer text 
License: https://github.com/gibbonCode/GIBBON/blob/master/LICENSE 
GIBBON: The Geometry and Image-based Bioengineering add-On. A toolbox for image 
segmentation, image-based modeling, meshing, and finite element analysis. 
Copyright (C) 2018  Kevin Mattheus Moerman 
This program is free software: you can redistribute it and/or modify it under the terms of 
the GNU General Public License as published by the Free Software Foundation, either 
version 3 of the License, or (at your option) any later version. 
This program is distributed in the hope that it will be useful, but WITHOUT ANY 
WARRANTY; without even the implied warranty of MERCHANTABILITY or 
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
more details. 
You should have received a copy of the GNU General Public License along with this 
program.  If not, see http://www.gnu.org/licenses/. 
Published with MATLAB® R2016a 

https://github.com/gibbonCode/GIBBON/blob/master/LICENSE
http://www.gnu.org/licenses/
http://www.mathworks.com/products/matlab
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Appendix B. MATLAB script to compare wind tunnel and 
CFD data 

clc; close all; clear all; 

 

xyzExp = xlsread('xyzExp.xlsx','B2:D17'); %Read the xyz spatial position of pressure 

ports 

xyzExp = xyzExp.*0.0254; %Convert port position from in to m 

LxyzExp=length(xyzExp); %Set the length of the pressure port file as an index variable 

 

PercDiff=zeros([9 16]); %Preallocate Percent Difference table 

 

ports=[1:LxyzExp]; %Creates array of how many ports are used 

 

max_pres=zeros([1 9]); %Preallocates an array for maximum pressures 

 

figure(); %Creates figure in which all velocity comparison plots will be placed 

 

for h=20:10:100 %increments through 20mph run to 100mph run at 10mph increments 

    %iterates through CFD filenames 

    filenameCFD=[num2str(h),' ','MPH.xlsx']; 

 

    %imports CFD data from file for this iteration 

    CFD_data = xlsread(filenameCFD,'A2:D4647'); 

 

    %Creates a variable for the number of data points in CFD file 

    LCFD=length(CFD_data); 

 

    %Preallocates array for a row sum the same length as CFD file 

    row_sum=zeros(LCFD,1); 

 

    %iterates through Experimental filenames 

    filenameExp = ['Experiment_4Feb19_',num2str(h),'mph.xlsx']; 

 

    %imports Experimental data from file for this iteration 

    Exp_data = xlsread(filenameExp,'F2:U18'); 

 

    %Preallocates vector for storing CFD index of point that is closest to an xyz 

location for an experimental pressure port 

    indexVector=zeros([1 LxyzExp]); 

 

    for i=1:LxyzExp;%iterates through the total number of pressure ports 

 

        %iterates through the total number of CFD data points to find closest point to 

pressure port xyz location 

        for j=1:LCFD; 

 

            %calculates the difference in xyz location for CFD point and pressure port 

            Dif = xyzExp(i,:)-CFD_data(j,1:3); 
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            %sums the xyz differences to calculate an error 

            sum_new = sum(abs(Dif)); 

 

            %assigns the error for each point in the CFD file compared to a single xyz 

location for a pressure port 

            row_sum(j)=sum_new; 

        end 

 

        %finds the minimum error and assigns an index (row) from the CFD file for the xyz 

location 

        indexVector(i)=find(row_sum == min(row_sum)); 

    end 

 

    %turns the CFD pressures into a row instead of a column 

    CFDPres=transpose(CFD_data(indexVector,4)); 

 

    %averages the pressure for each pressure port over a run at a particluar velocity 

    ExpPres=(sum(Exp_data)./size(Exp_data,1))*6894.76; 

 

    %Finds the maximum pressure for each particular velocity run 

    max_pres((h/10)-1)=max(abs(ExpPres)); 

 

    %indexes the percent differences for pressures for each velocity run 

    x=(h/10)-1; 

 

    %calculates the percent difference for every pressure port xyz location accross for 

every velocity run 

    PercDiff(x,1:16)=abs(minus(CFDPres,ExpPres)./CFDPres)*100; 

 

    %creates a 3x3 matrix of subplots within the preallocated figure to place pressure 

profile comparisons 

    subplot(3,3,((h/10)-1)); 

 

    %assigns the error from the pressure scanner 

    err = 30.9*[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]; 

 

    %plots the pressure data for every port with error bars 

    errorbar(ports,ExpPres,err,'--sb'); 

    hold on 

 

    %plots data from CFD at each port 

    plot(ports,CFDPres,'--or'); 

 

    %creates title for comparison plots 

    title([num2str(h),'MPH CFD v. Experimental Pressure Comparison']); 

 

    %labels the x axes 

    xlabel('Pressure Port'); 

 

    %labels the y axes 

    ylabel('Pressure (Pa)'); 
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    %creates a legend for the plots 

    legend('Experimental Data','CFD Data','Location','northeastoutside'); 

end 

Published with MATLAB® R2016a 
  

http://www.mathworks.com/products/matlab
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Appendix C. Deformed VLTAV pressure comparisons and 
drag coefficient data 
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